Extensions 1→N→G→Q→1 with N=C32×He3 and Q=C2

Direct product G=N×Q with N=C32×He3 and Q=C2
dρLabelID
C3×C6×He3162C3xC6xHe3486,251

Semidirect products G=N:Q with N=C32×He3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C32×He3)⋊1C2 = C32×C32⋊C6φ: C2/C1C2 ⊆ Out C32×He354(C3^2xHe3):1C2486,222
(C32×He3)⋊2C2 = C3×S3×He3φ: C2/C1C2 ⊆ Out C32×He354(C3^2xHe3):2C2486,223
(C32×He3)⋊3C2 = C3×He34S3φ: C2/C1C2 ⊆ Out C32×He354(C3^2xHe3):3C2486,229
(C32×He3)⋊4C2 = C32×He3⋊C2φ: C2/C1C2 ⊆ Out C32×He381(C3^2xHe3):4C2486,230
(C32×He3)⋊5C2 = C3⋊S3×He3φ: C2/C1C2 ⊆ Out C32×He354(C3^2xHe3):5C2486,231
(C32×He3)⋊6C2 = C3410C6φ: C2/C1C2 ⊆ Out C32×He381(C3^2xHe3):6C2486,242
(C32×He3)⋊7C2 = C3×He35S3φ: C2/C1C2 ⊆ Out C32×He354(C3^2xHe3):7C2486,243
(C32×He3)⋊8C2 = C3413S3φ: C2/C1C2 ⊆ Out C32×He354(C3^2xHe3):8C2486,248


׿
×
𝔽